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Hamilton's turns and geometric phase for two-level systems 
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Abstract Hamilton, in the course of his studies on quaternions, introduced an elegant 
geometric representation for the composition of SU(2) elements, in terms of turns on the 
Uni t  sphere Si. We use these turns to study two-level systems, with particular reference to 
geometric phase. The special ides played by piecewise geodesic circuits in the State space 
and evolution under constant Hamiltonian are recognized. 

1. Introduction 

Two-level systems are by far the most intensively studied systems in the context of 
geometric phase, and they have played a major role in clarifying several aspects of 
this phase. The polarization optics of birefringent media and optically active media is 
an example of such a system. It is in this context that Pancharatnam [l] discovered 
one of the early examples of geometric phase [2,3]. Since the pioneering work of 
Berry [41, a large number of geometric phase-related studies have been carried out in 
this area [5-14]. Geometric phase in the context of two-level systems has also been 
studied extensively in magnetic resonance [ 15-18], neutron interferometry [ 19-22] and 
two-level atoms [23-271. 

For two-level systems the state space is CP' = S2, and the group SU(2) plays a 
basic role in the dynamics of these systems. Traditionally one represents the state 
geometrically on S2, but handles the composition of the SU(2) evolution operators 
algebraically. However, one can employ the elegant geometric construction of turns, 
introduced by Hamilton [28] in the context of his studies on quaternions, to handle 
the SU(2) evolution operators geometrically. (An excellent exposition of Hamilton's 
work and that of later authors can be found in the monograph of Biedenharn and 
Louck [ZS].) The power ofsuch an approach in the context of several synthesis problems 
111 gulalr'arrurl upnLa ,.a> "CCLL UCIIIULLILLILGU L C L Z - L L I L y  LJU-22,. 

led, for the first time, to a generalization [34,35] of Hamilton's ideas to the non-compact 
group SU( 1,1) = SL(2, R )  = Sp(2, R ) .  

In the present paper we use Hamilton's turns to study two-level systems, particularly 
from the point of view of geometric phase. In section 2 we begin by recounting briefly 
how the elements of SU(2), as also their composition, can be represented geometrically 
using turns, and then show how turns act on the state space of two-level systems, In 
section 3 we explore in the context of geometric phase the special role played by 
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piecewise geodesic closed circuits in the state space and evolutions under piecewise 
constant Hamiltonians. We then use Hamilton's turns to obtain insight into the 
geometric phase of two-level systems. For the purpose of clarity of presentation, we 
do this in three stages. We conclude in section 4 with some final remarks. 

R Simon and N Mukunda 

2. Hamilton's turns, two-level systems and the Poincar6Bloch sphere 

It is well known that matrices U E SU(2) are determined by two complex (i.e. four real) 
parameters satisfying one real condition amongst them: 

a i + a . a  = 1 
a,-ia, -az-ia, 
a,-ia, a,+ia, 

u =a , - i a . a=  

T L ~ r ' ^ " . . ~ r L ~ L ^ . . . - " n - ~  -..- E..,- ------ ...".." A"*---:-:-""-*: -.-- .33 ,,--:,.--.- 
LIlci U 3 .a,= L L l r j  " Y 1 L 1 U ~ C L 1 C V U ~  LlUlci, p,'lL,,GLG,>, "GtG ,,,,,,,,,, I a yur,,c U,, a 
geometric notion of turns originates from the fact that U is equally well determined 
by an ordered pair of unit vectors 6, 6 ' ~  S2 such that the Euler parameters are 

. rla 1.11, L",, 5 

a = I? A 6'. (2.2) a -6.; '  
0 -  

Now, the ordered pair ($ 2 )  can be pictured by the directed great circle arc on S z  
with the tail at n̂  and the head at 6'. It is clear from (2.2) that U (i.e. a,,, a )  does not 
determine i, 6' uniquely; for, if n* and n̂ ' are rotated by the same amount about the 
axis perpendicular to the great circle containing them, the resulting pair continues to 
satisfy (2.2) and hence determines the same U .  Such a rotation corresponds, of course, 
to sliding the directed great circle arc representing U along its great circle. 

Now, consider the equivalence classes of directed great circle arcs on S2, the 
equivalence being with respect to the sliding discussed above, These equivalence classes 
are Hamilton's turns. 

Thus, we can identify elements U E SU(2) through the associated turns A(;, 2)  as 
It is thus clear that turns and elements of SU(2) are in one-to-one correspondence. 

=A(;, 6')  c. ;'-in  ̂ A 6' .  (r (2.3) 

and talk of turns and SU(2) elements interchangeably. It should always be remembered 
that for the turn A(;, 6 ' )  the representative directed great circle arc is from I? towards 
2, through a length not exceeding n, with the tail at n' and the head at I?. For brevity, 
the representative arc itself will often be called the turn. 

Apart from the one-to-one correspondence between turns and elements of SU(2), 
turns give to the SU(2) group operations a beautiful geometrical meaning. From (2.3) 
we see, by inspection, that 

A(rl,n^')-'=A(ri,n^')+=A(n^',n*) (2.4) 

showing that the inverse of a turn is just the geometrically reversed turn. Further, for 
any two SU(2) elements U, U' with associated turns A(& i'), A(;', i?'), respectively, 
the identity 

u'u=A(6' ,  n^")A(i, 2)  
=(n^' .n*"- in^'An^".a)(n^.n^' - in*An".a)  

= $. $'- i k c .  =A(& 9) (2.5a) 
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brings out the following geometric meaning of SU(2) group multiplication. To compose 
two SU(2) elements U, U’ choose their turns (using the freedom to slide along their 
respective great circles) such that the head of the right factor U and the tail of the left 
factor u’coincide (this is always possible, for any two great circles on S 2  either coincide 
or intersect). Then the turn corresponding to the SU(2) product u’u is simply the great 
circle arc from the free tail of the right factor U to the free head of the left factor U’. 

turn n‘p=tum i n .  I j i .%j 

Note that when written this way the individual terms in thb ‘sum’ read from left to 
right correspond to the factors in the SU(2) product read From right to left, so the 
order is important and the ‘sum’ is non-commutative. 

This geometric ‘addition’ rule for turns is associative, and faithfully reproduces the 
non-commutative group composition in SU(2). It is reminiscent of the parallelogram 
law for the composition of elements of the Abelian Euclidean translation group. 

The group SU(2), and hence Hamilton’s theory of turns, is fundamental to the 
dynamics of two-level systems. The normalized states of a two-level system can be 
parametrized by unit vectors 6 = (cos 8, sin B cos q, sin B sin 9) E S2, with 6 and ‘p 

being the polar and azimuthal coordinates on S2: 

We will often find it convenient to write (2.50) as 

(This parametrization is well defined everywhere except at the ‘south pole’ R = q.1 This 
state I$(;)) leads to the 2 x 2  density matrix 

p ( i )  =I$(ii))($(I?)~=t(I+I?.u). (2.7) 

With this one-to-one correspondence between states of the two-level system and points 
on S2, the transformation of the state under an SU(2) evolution, i.e. under the action 
of a turn, is given by the familiar two-to-one SU(2)+S0(3)  homomorphism. For the 
particular case where the turn and the point representing the state are on the same 
great circle (the importance of which will soon become clear), we have 

A( ii, $’)B. uA( ii,2)-’ = 2’ . U 
2’= 2(n .̂ 6‘);’- (2.8) 

6. n” = 2. $8 -n^”A i t ,  

Thus, the turn A(;, 6’) acting on the state p( ii), moves it along the great circle containing 
I? and I?’, but past n^’ to the point I?” which makes the same angle with I?’ as I?. Hence, 
the turn that will take p ( i )  to ~ ( 4 ’ )  is not A(&,;’) but ‘half’ of it, i.e. the turn 
A(;, (I?+ii’) / l l l+n*’l) with the tail at I? and the head at the mid-point of I? and 2: 

We have seen that states are points on S2, whereas turns are (equivalence classes 
of) directed great circle arcs on Sz. To avoid confusion, it is useful to view them as 
two separate unit spheres. We can call the former the Poincafe-Blocht sphere 9 and 

t It is called the Poincaie sphere in polarization optics, and the Bloch sphere in the context of spin systems. 
In the case of two-level moms one calls it the pseudo-loch sphere. 
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the latter the sphere of turns T. From the fact that 

R Simon and N Mukunda 

(2.10) 
a ~ dAd' 
2 In^ A n^'l 
-=sin-'/; A 6'1 m =- 

we see the connection between turns and the axis-angie description ofSU(2j eiements: 

(2.11) 

Here a / 2  is the angle (not exceeding P )  between the unit vectors d and I?', and th is 
the unit vector in the direction of d A 6'. From (2.11) it is clear that the effect of a turn 
A(;, 2') on the Poincaie-Bloch sphere B is to produce a right-handed rotation of 
amount 2 sin-'(d A d'l with d A d' as the axis of rotation. This rotation will transport 
points on C along circles of constant latitude with respect to d A d'. Thus, states on 
the geodesic (great circle) perpendicular to d A d' on 9, and only these states, will 
trace geodesic trajectories under the action of the turn A(;, ;').(The situation in (2.8), 
(2.9) clearly corresponds to this case.) It is this geodesic evolution that will be exploited 
in the next section to obtain the connection between turns and geometric phase. 

3. Hamilton's turns and geometric phase 

The state space of a system is the space of pure state density operators, i.e. the space 
of unit rays. It is also called the projective Hilbert space of the system, and the 
normalized state vectors constitute a U(1) bundle over this space. When a state is 
transported along a closed circuit in the state space in accordance with the quantum 
mechanical equation of motion, the final state vector would have, in general, picked 
up a phase relative to the initial vector. Part of this phase depends on the specific 
Hamiltonian used (out of a continuous family of possible choices) to transport the 
state along the circuit. This part is called the dynamical phase, and is simply given by 
the integral of the instantaneous expectation value of the Hamiltonian along the circuit 
[36]. The remaining part is the geometric phase, and depends only on the state space 
circuit. It is independent of the choice of Hamiltonian, and is invariant under re- 
parametrization of the circuit. 

It follows that, given a circuit in the state space, if we transport a state along this 
circuit using a Hamiitonian which has zero expectation vaiue at each point on the 
circuit, then the phase picked up  by the state vector will be simply the geometric phase 
associated with this state space circuit, the dynamical phase being zero. This fact, 
which is important in the design of geometric phase experiments [6,7], is the basis 
for the special status enjoyed by piecewise geodesic circuits: for every geodesic piece 
we can choose a constan! Hamiltonian to transport a state vector along the piece with 
zero dynamicai phase. Tnus, piecewise geodesic i-irciiiis in siaie space siid evoiuiioii 
under piecewise constant Hamiltonians are intimately connected. 

It is this fact that we exploit to study the connection between Hamilton's theory 
of turns and the geometric phase of two-level systems. For convenience we do this in 
three stages. 
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3.1. Geodesic triangle 

For a two-level system (polarization optics, spin system or two-level atom) the state 
space is the Poincaie-Bloch sphere 9. Consider on 9 a geodesic triangle circuit n̂ ,;2& 

as shown in figure l(a) where we have taken, without loss of generality, n ,̂ at the north 
pole. We will first present the piecewise constant Hamiltonian which produces 
evolution along this piecewise geodesic circuit. To this end, recall from (2.9) that 
A(&,  ( n ^ , + ~ ? , ) / l n * , + ~ ~ l )  is an SU(2) element which acts on n ,̂ to evolve it to $. 
Further, since the term linear in U in 

is proportional to  n^, A I?, it is clear that 

for some real p .  Indeed, p can be shown to equal 4 sin-lli, A ;,I, but the actual value 
of p turns out to be unimportant for our argument. It is clear from (3.2) that 
A(; , ,  (n^,+n^,)/ln*l+n^,l) is a unitary evolution for unit time under the constant 
Hermitian Hamiltonian 

H =pi, A I??. U. 

p ( i ( ~ ) )  = +(I+ ;(A).  U) 

(3.3) 

Now, the states along the geodesic arc n’,n^, on 9’ are of the form 

(3.4) 

It is clear that for each A, and hence for all states along the geodesic arc the 
expectation value of H, namely t r ( p ( A ) H ) ,  is zero. Thus, A(&, (n^+n^,)/ln^,+n*21) 
represented by the turn n*,P, with P, = (n^, + n^,) / l& + i21 on the sphere of turns T in 
figure l ( b )  indeed transports the state n ,̂ to 6, on 9’ along the geodesic arc ensuring 

Figure I. ((I) Geodesic triangle circuit on the Poincart sphere. ( b )  Piecewise constant 
Hamiltonians represented on the sphere of t u ”  
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zerodynamicalphase.Similarly,with h, =(ii2+&)/li2+n*,l andh,=(n',+n*,)i~i,+n',~ 
the tums i2h, and &h2 respectively transport the state along i2i, and n',n^, with zero 
dynamical phase. Thus, the sequence of turns &h3, i2&, ;,A2 on 9 transports the 
state n*, back to itself along the geodesic triangle n*,n*,n*, on 9; the Hamiltonian is 
piecewise constant and the dynamical phase is zero. 

To make further progress we have to compose these three turns using the non- 
commutative, but associative, 'addition' rule for turns. We will show that 

(3.5) 
Here i?, 6, are intersections of the (extensions of the) geodesics i,i2 and &,hi, with 
the equator as shown in figure I(b). 

R Simon and N Mukunda 

turn i,m,+turn i ,m,+tum &&=turn ili2. 

To prove ( 3 . 9 ,  first note that turn i2hl =turn hit,& and hence 

turn i 2 h , + t u r n  i , h 2 = t u r n  h , i ,+ turn  n*,h,=turn hIi2 (3.6) 
by virtue of (2.56). Further, if a, b, c are the (arc lengths of the) sides of the geodesic 
triangle on 9, then 

cos a =I?,. i, c o s b = i , . i ,  cos c = i, . n*, 

~ n*,+n*, n̂ , + i, ~ il+i2 (3.7) m, = $12 = m, = 
2 cos(a/2) 2 cos(bi2) 2 cos(ci2)' 

Finaiiy, note that i,, i,, i, can easiiy be expressed as iinear combinations of i,, i,, 
n*,. Since i, is a linear combination of I?, and i2 and orthogonal to n*, we have 

i2-cos cn*, 
sin c ' 

u1 = 

Similarly, &is  a linear combination of 6, , L2 as well as of A,, A,, hence it is orthogonal 
to h, A&,; thus we find 

i2-i, 
U, = 

2 sin(ci2) (3.9) 

The fact that i, is a linear combination of 6, and h, but orthogonal to n*, leads to 

(3.10) 

From (3.7)-(3.10) it is clear that i,.h3=6,.i?,, n * , n h 3 = i , h i 3 ;  and &.h2=&.62, 
6, A G2 = i, A i,, proving 

(3.11) 

sin(c/2)(n*, + i3) cos(b/2)(i2- i,) 
Lcos ja i i )  cos(b/L) L c o s j a i i j  s in jc j i j '  

2, = 

A . .  turn ilh, = turn i,i, turn hlh2 = turn u3u2. 

Combining (3.11) with (3.6). we have 
turn n*,h,+turn n*,h,+tum n^,h2=turn i,&,+turn hlh2 

=turn i , i ,+turn i I i 2 = t u r n  i,i2 (3.12) 

which proves our assertion (3.5). 
Having shown that the sum of the three turns is a turn on the great circle orthogonal 

to I$,, we have to compute its arc length 1. Clearly cos I = i, * 2,. Using the expressions 

expression in terms of a, b, c. This leads to the symmetric result 
FA- 2 .1 A..-.. :.. I 2  o \  1'1 r n \  ..._--.. ----...e .1 ..1 -..A (1  7 )  tn mot +hp raQlnl+inn L-o".L...e I V L  "1, "2 e,"=,, 111 ,J.O,, \-'.I", w c  .,PI, C u L ' L y " "  "1 - "2 P1.U U01 \ . ' . ' I  L" C Y I L  

1 +cos a +cos b +cos e 
4cos(a/2) cos(b/2) cos(c/2)' 

cos 1 = 6,. i, = (3.13) 
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It can be immediately recognized that this is the standard expression for cosfA(a, b, 
c), where A(a, b, c )  is the area (solid angle) of a geodesic triangle with sides a, b, C. 
Thus, we see that the arc length I of the composed turn i ,6 ,  is half the solid angle of 
the triangle along which the component turns cycle a state. 

Since 6, A 6, is in the direction of 6, (the polar axis) we see that the unitary operator 
corresponding to the turn 6,6, is 

A(ii,6,) = u I ~ u z - ~ u I  A A . *  A u , . u  A = cosf A-i siniAu3=exp ( : )  - i - ,u3 . (3.14) 

This unitary operator was constructed by composing the three individual unitary 
transformations which together take the state p ( & )  back to itself along the geodesic 
triangle n^,i2i3. Consistent with this fact we see explicitly that the state vector 

(3.15) 

Corresponding to 6, on 9 picks up a phase -A/2 under this evolution: 

I+(.*,))+exp -i-u3 ~ ~ ( ~ , ) ) = e ~ ~ A ’ z ~ ~ ( i l ) ) .  (3.16) 

Since we have ensured that the dynamical phase is zero, this phase -A/2 is simply 
the geometric phase. We have thus proved, using Hamilton’s turns, that the geometric 
phase associated with a geodesic triangle on 9 equals minus half the area of the triangle. 

It should be stressed that our results have invariant meaning, and are independent 
of our simplifying assumptions. For instance, we derived our results choosing counter- 
clockwise (positive) sense for the circuit on 9. Now suppose the circuit had clockwise 
sense. Then the ‘sum’ tum in (3.5) would have reversed and as a consequence the 
(geometric) phase picked up by $(6J would have reversed signature, as can be seen 
from (3.16). However, the relationship between area and geometric phase remains 
unchanged, for reversing the sense of the circuit changes the signature of its area. 
Similarly, we took 6, to be along the polar axis. Since SU(2) acts transitively on 9, it 
is clear that if we take 6, in some arbitrary direction the ‘sum’ turn would lie on the 
great circle orthogonal to I&, will have an arc length equal to half the area of the 
triangle and will have, as viewed from n * , ,  the same sense as the circuit. That is, (3.16) 
is valid for an arbitrary direction of I?,: given 6, ,  under the action of a tum lying on 
the great circle orthogonal to 6, the state vector $ ( n ^ , )  picks a phase with magnitude 
equal to the arc length of the turn and signature opposite to the sense of the turn as 
viewed from 6, .  

( 3  

3.2. Geodesic polygon 

Having shown that for a geodesic triangle the geometric phase equals minus half the 
area of the triangle, it is now easy to show that this connection between geometric 
phase and area applies to an N-sided geodesic polygon as well. 

Given a geodesic polygon k , i , & .  . . 6, on 9 as shown in figure 2, the N turns, 
namely turn n^,(n^,+r?,)/li,+ii,l, turn i i2(iiz+i3)/~&+63~, . . . , turn i N - , ( i N - , +  

&)/liN-,+iiN1, turn n‘N(n’N+61)/ln^N+n*,l, acting in that sequence will transport i ,  
back to itself along the polygon, ensuring that the dynamical phase is zero (at every 
point on the circuit). It follows that to find the geometric phase associated with the 
polygon we have to simply find the ‘sum’ of these N turns, which we know corresponds 
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to the product of the unitary transformations with piecewise constant Hamiltonian 
'acting along' the sides of the polygon. Let this sum be S. 

Clearly, we can introduce (i.e. 'add') the null turnt 
$,+I?, ;,+I$; 

lii, + i l l  I ii, + ii,l turn ii,& = turn nj- +turn I?, - (3.17) 

between turn ~,-!!n^,-!+i i ) ! !r i?-,+i i?! and turn rl;($+r;?+!!!!r;?+ii~+!!? i = 3 . 4 , .  . . N -  1 
in the sum without affecting it. That (3.17) is indeed a resolution of the null turn 
follows from the fact that tum &(&+i&)/~i,+ri,l equals turn [ (~ ;+~? , ) / l&+i i~ I l~~ .  
This added null turn corresponds to going from r?, to n^, along the geodesic iiji, and 
returning back to I?, along this geodesic. With these ( N - 3 )  resolutions of the null 
turn inserted in the original sum S of N turns, we have to now sum N - 2 ( N - 3 )  = 
3 ( N - 2 )  turns. 

Using associativity, we can now write this sum as a sum of ( N + 2 )  partial sums, 
each corresponding to a sum of three turns, as follows: 

>. 
ii, + r;, 6, +I?<+* i;+, + ii, 

" - I (  i = 2  In,+n,l I i t  + &+I1 Ini+, + ;,I S = turn ii, ;-+turn ii; +turn (3.18) 

We will see that these ( N - 2 )  partial sums commute with each other. 
I t  is readily realized that the ith partial sum in (3.18) is just the sum of the three 

turns transporting n*, back to itself along the ith geodesic triangle ;,@,+, and ensures 
zero dynamical phase. And from our analysis in section 3.1 we know that this partial 
sum is a turn which lies in the great circle orthogonal to n^, , has arc length equal to 
half the area of the ith triangle and, as viewed from ii,, has the same sense 
as the triangle (and hence as the polygon). 

It should be stressed that both the greaf circle on which the ith partial sum turn lies 
and also the sense of this furn are independent of i. Consequently, we see first that the 
sum of ( N - 2 )  partial sums is an Abelian sum (they are on the same great circle) and 
then that the arc lengths of these ( N  -2) partial sums simply add (they have the same 
sense) to give the arc length of S. Thus, S is a turn with arc length of amount (Al/2 
where A is the area of the polygon, it lies in the great circle orthogonal to n*, and, as 
viewed from n " , ,  has the same sense as the poiygon. i t  ioiiows that tne state p(nl) is 
an eigenstate of S with eigenvalue This phase of minus half the solid angle 
picked up by Jl(ii,) on its tour around the polygon is purely geometrical since it was 
ensured that the dynamical phase was zero. 

t The null turn corresponds to the identity element of SU(2). 

. , - ~  
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We have thus proved that the geometric phase associated with an N-sided polygon 
on P equals minus half of its area, for every N. The key element in this proof was 
the introduction of the ( N  - 3) resolutions of the null turn which divided the polygon 
into (N-2) triangles all having a common vertex il, rendering the geometric phase 
of the polygon to be simply the sum of the geometric phases of the ( N  -2)  triangles. 
It converted the original sum into a sum of commuting turns. 

3.3. Arbitrary closed circuit 

The above result for the N-sided geodesic polygon can be easily extended to an 
arbitrary closed circuit on P in an obvious manner. 

Given a closed circuit on P, we can approximate it by an N-sided geodesic polygon 
for sufficiently large N. Noting that the relationship between the geometric phase and 

that the geometric phase associated with any closed circuit on 9' equals minus half of 
its area. 

"-.p" n C  n- 1 7  o i l n l  --I .."-- :....-t:A e-- " I t  h r  ...~^"- *-*.- .L- ,:-:A Lr .- I__ 

a L c a  "1 e.. I.-O."C" p"LJL"L1 .a "a.," I", a,, ' Y ,  w r  call l l U W  La&= L U G  1,11111 1" - w  L U  JCC 

4. Concluding remarks 

We have studied two-level systems and their geometric phases using Hamilton's tums. 
Our approach was algebraic, using geodesic polygons to develop the relation between 
geometric phase and area on P; this brought out the importance of geodesics on the 
one hand and piecewise constant Hamiltonians on the other. Alternatively, one could 
have set up, in the spirit of [30], a differential equation connecting increments in the 

amounts. But we believe that the present approach is more illuminating, with turns 
giving insight into the geometry of phases and geometric phase giving insight into the 
geometry of turns. 

If we add the turns forming the sides of a directed piecewise geodesic polygon on 
9 we indeed get the null turn; but if we take 'half' of these turns and then add them, 
we do not get the null turn. Instead we get a turn whose arc length equals half the 
area ofthe polygon, as was shown in section 3. The same arc length equals the geometric 
phase by construction (since the construction ensured that the dynamical phase was 
zero). This situation can be contrasted to translation vectors and directed polygons in 
Euclidean space, where taking half of the sides of the polygon will lead to a 'similar' 
polygon and hence these half vectors will again add to the null vector. It is the curvature 
of 9= S2 which is responsible for the anholonomy of the half turns not adding up to 
the null turn. I t  is the same curvature of 9' = S2, sometimes viewed as a monopole at 
the origin, which is responsible for non-vanishing geometric phase. 

The general methods and approach of the present paper may be fruitfully compared 
with the treatment of the geometric phase given in [37], based on quantum kinematic 
ideas. In particular, the important roles of geodesics in state space, and polygons, may 
be noted. 

Finally, as noted in the introduction, Hamilton's turns have been generalized to 
the non-compact group SU(1, l),  in which context these geometric objects are called 
screws [34,35]. Since there is considerable interest in the geometric phase of SU(1, 1 )  
systems [38-431, it will be of considerable value to extend the present analysis to 

- . m m  n f + . . m o  +n rhQnnni in th- nnnmarr:r - h m o n  n o  r h n  ,-:-.-,,i+ ir laFn--el h.ri-fi-itn.i.rol 
1Y..l "L L " L 1 . I  LW ""u.6'" .LI I.L* 6 - " , L l . , \ L . u  p"'"c "1 I..,. 11.1"11.., "CL".IIIC" ", ,l,,,l,,l~o,,,,a, 
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screws and systems with SU(1, 1) symmetry. We plan to return to this problem 
elsewhere. 

R Simon and N Mukunda 

References 

[I] Pancharatnam S 1956 Roc. Ind. Acad. Sei. A 44 1759 
121 Ramaserhan S and Nityananda R 1986 Curr. Sei. 55 1225 
[3] Berry M V 1987 1. Mod. Opt. 34 1401 
I41 Berry M V 1984 Proc. R Soc. Lnndon A 392 45 
[51 Bhandari R a n d  Samuel J 1988 Phys. Reo. Lett. MI 1210 
161 Chyba T H, Wang L 1, Mandel L and Simon R 1988 Opt. Lett. 13 562 
[71 Simon R, Kimble H J and Sudarshan E C G 1988 Phyx Rev. Lett. 61 19 
[SI Maddon J 1988 Noture 334 99 
191 Bhandari R 1988 Phys. Lett. 133A 1 

[IO] Jiao H, Wilkinson S R, Chiao R Y and Nathel H 1989 Phys. Re". A 39 3475 
[ I l l  Tompkin W R, Malcuit M S, Boyd R W a n d  Chiao R Y 1990 J.  Opt. Soc. Am. B 7 230 
[I21 Aganval G S and Simon R 1990 Phys. Rev. A 42 6924 
[I31 Martinelli M 1989 Opt. Commun. 72 341 
[I41 Vinitskii S I, Derbov V L, Dubovik V N, Markovski B Land  Stepanovskii Yu P 1990 Sou. Phys.-Usp. 

[U] Tycho R 1987 Phys. Rev. Lett. 58 2281 
[I61 Suter D, Chingas G C, Harris R A  and Pines A 1987 Mol. Phys. 61 1327 
[I71 Suter D, Mueller K T and Pines A 1988 Phys. Rev. Lett. MI 1218 
[IS] Gamliel D and Freed J H 1989 Phys. Rev. 39 3238 
1191 Bitter D and Dubbers D 1987 Phys. Re". Len 59 251 
1201 Dubbers D 1988 Physic0 151B. C 93 
[ZI] Wagh A G and Rakhecha V C 1990 Phys. Lett. I48A 17 
[22] loffe A I, Kirsanov S G, Sbitnev V I and Zabiyakin V S I991 Phys. Lett. 158A 433 
[231 Agarwal G S 1988 Phys. Rev. %A 5957 
[24] Ellinas D, Barnett S M and Dupertuis M A 1989 Phys. Re". 39A 3228 
[XI Datta N, Ghosh G and Engineer M H 1989 Phys. Re". 40A 526 
1261 Tewari S P 1989 Phys. Rev. 39A 6082 
[27] Klyshko D N 1989 Phys. Lett. 140A 19 
[28] Hamilton W R 1853 Lectures on Quaternions (Dublin) 
[29] Biedcnham L C and Louck J D 1981 Angular Momentum in Quantum Physics. Encyclopedia of 

1301 Simon R, Mukunda N and Sudarshan E C G 1989 PIomona 1. Phys. 32 769 
1311 Simon R a n d  Mukunda N 1989 Phys. Lett. I38A 474 
[321 Simon R a n d  Mukunda N 1990 Phys. Lett. 143A 165 
1331 Mukunda N 1990 Cur,. Sei. 59 1135 
I341 Simon R, Mukunda N and Sudarshan E C G I989 Phys. Rev. Lett. 62 1331 
[351 Simon R, Mukunda N and Sudarshan E C G 1989 J. Moth. Phys. M loo0 
[361 Aharonov Y and Anandan J 1987 Phys. Rev. Lett. 58 1593 
[37] Mukunda N and Simon R 1991 Quantum kinematic approach to the geometric phase-I: general 

[38] Chaturvedi S ,  Sriram M S and Srinivasan V 1987 J. Phys. A :  Math. Gen. 20 L1071 
[39] Jordan T F and Chiao R Y 1988 Phys. Lett. 132A 77 
[40] Giavarini G. Goui E, Rohrlich D and Thacker W D 1989 J. Phys. A :  Math. Gen. 22 3513 
[4l] Simon R 1990 Cum Sci. 59 1168 
[42] Biswas S N and Soni S K 1990 Roc. Ind. Not1 Sei Acod. 57 1 
1431 Aganval G S 1991 Opt. Commun. 82 213 

33 403 

Mothemotier and its Applications vol 8 (Reading, M A  Addison-Wesley) 

formalism Preprint IISc, Bangalore, and IMSc Madras 


